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1 Team Organization and Design Process 

1.1 Introduction 

The IGVC team from Indian Institute of Technology, Kanpur was conceived by the members (from 

the Y13, Y14, Y15 and Y16 batches) of the institute’s earlier Robocon1 team, in October 2016. In order 

to gain a good enough background in programming and algorithms for developing a fully autonomous 

vehicle, there was a month-long learning phase. During this phase, the team members enrolled in 

various online courses on topics such as computer vision, SLAM, motion planning, etc. To focus a 

majority of the workforce into these areas (rather than manufacturing), it was decided to use a NEX 

Robotics2 0xDelta robot, purchased by the Intelligent Guidance & Control Laboratory at our institute. 

The robot was initially a 4-wheeled, skid-steering vehicle with pre-installed motors, encoders, a 

low-level controller and supporting power electronics. Over the course of time, several modifications 

have been made to the mechanical and electrical systems and a complete software stack has been 

developed for autonomous navigation. The team will now be participating for the first time in IGVC. 

1.2 Team Organization 

Recruitment of new team members happens every year through a screening test, followed by an 

interview conducted by existing members. Knowledge is propagated from senior batches to junior 

batches through lectures and mini-projects. Work is mainly divided into five modules – computer 

vision, localization & mapping, motion planning & control, electrical systems, and mechanical design. 

Members choose their area of work based on previous experience, interests, coursework, and 

department. Because of the multidisciplinary nature of work, the team members are chosen from 

diverse academic backgrounds including both engineering and science majors from undergraduate as 

well as postgraduate curriculums. For IGVC 2018, the team organization is as follows: 

Name 
(Department, Batch) 

e-mail 
(@iitk.ac.in) 

Role in Team 

Prof. Mangal Kothari (AE) mangal Faculty Advisor 
Aalap Shah (AE+EE, Y15) aalap Team Leader, SLAM, Motion Planning & 

Control, Mechanical Design 
Hemanth Bollamreddi (EE, Y15) blmhemu Team Leader, SLAM, Interoperability 

Profiles, Electrical Systems 
Abhishek Yadav (EE, Y16) abhiyad Localization, Computer Vision 
Aditya Rohan (MSE, Y16) raditya Localization, Computer Vision 
Ashish Kumar (AE, Y16) ashikum Mechanical Design 

Utkarsh Thukral (MTH, Y16) utkarsht Computer Vision 
Vaibhav Agarwal (PHY, Y16) vaibag Localization, Mechanical Design 
Vardhan Gupta (ME, Y16) vardhang Mapping, Mechanical Design 
Deep Parikh (EE, Y16 PG) deepj Mentor - Control 
Harsh Sinha (AE+EE, Y14) harshsin Mentor - Computer Vision 

 

It is worth noting that several members were involved in the earlier development of this vehicle 

during the year of 2016-17. Their contributions have been duly acknowledged at the end of the report. 

                                                             
1 ABU Robocon is a popular Asia-level Robotics competition. 
2 NEX Robotics is a robot manufacturing company based in Mumbai, India. 

mailto:mangal@iitk.ac.in
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mailto:abhiyad@iitk.ac.in
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mailto:ashikum@iitk.ac.in
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1.3 Design Process 

Some of the key concepts that motivated the design process followed by Team IGVC IITK have 

been highlighted below: 

 Modularity – One of the major technologies enabling modularity within our platform is ROS 

(Robot Operating System3). ROS allows the entire software stack to be divided into separate 

packages, each of which consists of nodes that can communicate with each other either by 

publishing data on topics or by subscribing to them. This presents advantages such as: 

o natural work division within the team, 

o ability to replace subsystems during development, treating the rest as a black-box, 

o ability to use open-source packages for parts of the system as well as to share the 

other parts of the system with the open-source community. 

Modularity is not just limited to software. All sensors are connected to the onboard 

computers via USB cables, and therefore, it is possible to replace/remove sensors at will. The 

localization algorithm automatically adapts to this change, but it might be necessary to modify 

drivers in some cases of replacements. 

The team has gone so far as to provide even mechanical modularity – the robot can switch 

between 4-wheel and 3-wheel modes – the advantages of which have been explained in a 

later section. 

 Robustness – For each subsystem, often various strategies were explored and implemented. 

They were first tested on simulations and recorded data. Once the performance achieved for 

one or more of these strategies was satisfactory, they were combined with other subsystems 

and tested on real-world environments similar to IGVC (made by the team). Any parameters 

involved in the software were then tuned for better performance. At the end of these tests, 

the best performing strategy/implementation was chosen. Besides accuracy, computational 

efficiency of code was also given importance since the vehicle’s reaction time directly depends 

on it. All test data has been recorded for future reference. 

 Open-Source and Documentation – Since a lot of open-source software was used in the 

development of the vehicle, it was decided that it is best to make the software developed by 

the team open-source as well. Our complete source code has been made available through 

GitHub repositories4, which are continuously updated and well-documented. Making the code 

open-source also ensures that team members adhere to standard coding practices more 

stringently as well as focus on code readability since all of their work is publicly visible. 

Moreover, a lot of test data has also been made publicly available on SourceForge.5 The team 

also actively maintains a YouTube channel6 where video recordings and screencasts of all 

these tests can be seen. When combined, all of this amounts to excellent documentation and 

hence, reusability of our software. A GPL-3.0 license is applied to all software developed by 

the team in order to promote open-source development (the license requires all works using 

this code also to be made open-source). 

                                                             
3 ROS is a popular open-source tool that provides a C++ library and several packages for robotics development.  
4 All of these repositories are available at https://github.com/igvc-iitk, our team’s GitHub organization. 
5 This test data is available at http://sourceforge.net/projects/igvc-iitk-data, our team’s SourceForge project. 
6 The YouTube channel, IGVC IITK can be found at the following link: 
   https://www.youtube.com/channel/UCrQoKMEBySfXPEqXGk-CZ8A/videos. 

https://github.com/igvc-iitk
http://sourceforge.net/projects/igvc-iitk-data
https://www.youtube.com/channel/UCrQoKMEBySfXPEqXGk-CZ8A/videos
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2 Innovations in Vehicle Design 

2.1 Mechanical Innovations 

 Switchable Vehicle Dynamics – Since the vehicle was initially a 4-wheel, skid-steer, differential 

drive model, it could not perform a finite-radius turn without slipping of the wheels (this is 

geometrically impossible). For indoor environments, the surface friction is often uniform, and 

therefore the distance traveled, as calculated from the odometry is accurate enough. 

However, for outdoor environments, the surface friction can no longer be assumed as 

uniform. Thus, the slipping of each wheel is different and not easily predictable (which notably 

complicates control too). Now, the distance traveled, and especially the heading, as calculated 

from the odometry is not accurate enough for localization. Two alternate solutions were 

implemented to overcome this problem: 

o Many visual odometry techniques were explored and tested before zeroing down to 

ORB-SLAM 2.7 Fusing odometry from ORB-SLAM 2 with other sensor data ensures that 

localization is accurate despite slipping of the wheels. 

o The front wheels were removed, and a single, smaller, freely rotating caster wheel 

with a suspension was added at the front. This effectively changes the robot’s vehicle 

dynamics to a unicycle model. Outdoor wheel odometry drastically improves after this 

change (as there is no slipping), eliminating the need for visual odometry. 

Thus, the robot’s vehicle dynamics can be switched at will. This gives a nice tradeoff. In 4-

wheel mode, the robot can navigate more harsh terrains, climb steeper inclines, and have very 

low vibrations (since the wheels have air-filled tubes) at the cost of higher computational load 

due to ORB-SLAM 2. In 3-wheel mode, the vehicle gives accurate odometry without additional 

computational resources and is easier to control but can only work in less harsh terrains (such 

as the IGVC course). 

 Adjustable but Rigid Camera Mount – The field of view of a camera depends on its height and 

orientation. So, having a camera mount that can be adjusted for both is desirable. However, 

simple ball joints such as those usually found in webcams can change orientation on 

experiencing jerks. So, a rigid-yet-adjustable mount was designed and fabricated from nylon 

sheets using precision water jet manufacturing. As seen in figure 1, the height and orientation 

can be adjusted simply by removing and re-inserting two bolts. The orientation can be set to 

fixed pitch angles from 0° to 60° in increments of 10°. 

 
Figure 1 - Adjustable but Rigid Camera Mount 

                                                             
7 See ‘ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras’ by Raul Mur-Artal. 
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2.2 Electrical Innovations 

 Seamless Manual (RC) to Autonomous Switching – It is desirable to drive the vehicle manually 

to a location before testing (as opposed to carrying it there) or to control the vehicle manually 

in the middle of a run. Thus, an RC transmitter is made to bind to a receiver attached to an 

Arduino Mega, which passes on the commands via serial communication to a ROS node 

running on the onboard computer. A particular knob on the remote can be turned on/off to 

switch the mode from manual to autonomous at will. When in autonomous mode, the robot 

takes commands from an automatic controller which follows the path given by the path 

planner. When in manual mode, these commands are ignored, and the RC controller takes 

precedence. 

Thus, it is possible to take over control in the middle of an autonomous run, then drive 

the robot for a while and then have it switch back – all without any hardware changes. 

Notably, localization and mapping are not interrupted by the switch. 

2.3 Software Innovations 

 Dynamic Inverse Perspective Transform – For mapping lanes, it is necessary to first transform 

the camera image to a top view (or birds-eye-view). Almost all IGVC teams use a pre-calibrated 

intrinsic and extrinsic transformation matrix for this purpose.8 The transformation equations 

used for this purpose are: 

[
𝑥′
𝑦′
𝑤

] = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

    

𝑡1

𝑡2

𝑡3

] [

𝑋
𝑌
𝑍
1

] 

𝑥 =
𝑥′

𝑤
, 𝑦 =

𝑦′

𝑤
 

Here, 𝑋, 𝑌, 𝑍 are the real-world coordinates, and 𝑥, 𝑦 are the image coordinates. The first 

matrix (intrinsic) is calibrated in the usual manner using a chessboard with known dimensions. 

However, for our vehicle, the second matrix (extrinsic) is dynamically calculated. An 

IMU is attached on the top of the camera for this purpose. The pitch and roll readings from 

the IMU and known geometric information (the height of the camera) are used to calculate 

the extrinsic matrix. This allows for a dynamic inverse perspective transform. The advantage 

of this method is that the top view image is correct even when the vehicle is on an incline or 

when the camera is shaking due to excessive vibrations. This is illustrated in figure 2. 

 

 

Figure 2 - Dynamic Inverse Perspective Transform (In the image on the left, the camera is pointing lower.) 

  

                                                             
8 This is as per the earlier years’ design reports. 
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 Visual Calibration of Laser Scanners – A ROS node was developed for obtaining the calibration 

between the robot’s front and rear laser scanners. The ROS node publishes a transform 

between the two frames that can be updated in real-time using multiple sliders. Then, RViz9 

was used to visualize the data points from both laser scanners in one window. The sliders were 

then adjusted until the two scans matched. This method can be used for rapid calibration 

between any two sensors with an overlapping field of view (even stereo cameras). 

 

Figure 3 - Green points are from the front scanner, red points are from the rear scanner. 

 LiDAR-based Safety braking – The robot’s driver has been modified in such a way so that it 

subscribes to topics on which the laser scans are being published. Then, when the robot is 

being issued control commands, it continuously checks whether the command may lead to a 

possible collision and the decision to actually pass on that command to the low-level controller 

is only made if it is safe to do so. In autonomous mode, this prevents collisions that occur 

when an obstacle suddenly appears in the field of view (and there hasn’t been enough time 

for a map update followed by a newly planned path). In manual mode, this serves as a great 

safety feature as it prevents the human controller from accidentally crashing the robot into 

an obstacle/wall. 

 Mission Control Dashboard – An rqt-based GUI10 has been developed in order to summarize 

all the information about the robot’s current state. Since this is very helpful during analyzing 

failure modes, it has been covered in greater detail in the section on failure modes. 

3 Description of Mechanical Design 

Despite the robot being manufactured by a company, there were several add-ons and 

modifications made by the team. One of the major changes was in the vehicle dynamics itself, as 

mentioned earlier. The other significant change was the inclusion of a spring-based suspension 

system, which became necessary after the addition of a caster wheel at the front. Besides, mounts 

were prepared for each sensor. 

                                                             
9 RViz is a 3D environment visualization tool compatible with ROS. We have also used RViz within the mission 
control dashboard for visualizing all localization and mapping data at once. 
10 rqt is an open-source framework for GUI development with ROS. 
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3.1 Chassis 

The vehicle’s chassis is a rigid iron frame covered with steel plates that enclose the entire electrical 

system except for the sensors, antennas, etc. Two plates are rigidly attached at the front and the rear, 

using hexagonal aluminum supports – one for the caster wheel and one for the rear laser scanner. 

Similarly, a stand is attached in the middle, which is used for the camera mount. A rendered image of 

the CAD model of the entire chassis, along with the sensor mounts, sensors, and status LED can be 

seen in figure 4. 

3.2 Sensor Mounts 

The camera mount’s design has been addressed earlier. Both laser scanners are directly attached 

using bolts. Additionally, a mount for the IMU and GPS has been manufactured, keeping in mind that: 

 magnetic interference from the motors at the location of the IMU is low, and 

 the GPS module is not covered from above by any object. 

3.3 Suspension System 

  When in 3-wheel mode, the vehicle requires a suspension system for the caster wheel. This is 

because it has a hard plastic surface – unlike the other two wheels, which have air-filled tubes (in other 

words, they are pneumatic wheels). Without the suspension system, the camera encounters large 

vibrations, which adversely affect mapping. 

As seen in figure 5, the suspension system consists of four half-threaded M8 Allen bolts that are 

rigidly attached to the caster wheel mount and allow for only vertical motion at the points where they 

are attached to the chassis. Springs are positioned around these bolts so that the vertical motion of 

the caster wheel is controlled by them. For calculating the required spring constants, the robot was 

weighed, and the relative distances between the springs, front point-of-contact, center-of-mass, and 

rear point-of-contact were measured. Then, the resulting force-balance and moment-balance 

equations were solved to find the spring constants. 

Figure 5 – CAD Model of “Daksh” with All Sensors Figure 4 – Suspension System (compressed state at bottom) 



7 | I G V C  2 0 1 8  D e s i g n  R e p o r t  –  I I T  K a n p u r  

 
 

   
 

3.4 Weather Proofing 

 The vehicle’s chassis encloses as much of the electrical system as possible. Only the sensors 

(laser scanners, stereo camera, IMU, and GPS) are placed outside the chassis, which is unavoidable. 

The top of the chassis is covered by a lid, which has holes to allow for the passage of the cables 

connected to the sensors. Thus, most of the electronics are protected from dust and light rain. For the 

protection of the sensors, a lightweight frame made out of GI wire and wrapped in polythene can be 

optionally attached at the top of the camera mount. Since this is the highest point on the vehicle, it 

covers all the sensors. The chassis itself is corrosion resistant. Finally, the plastic surface of the caster 

wheel has been covered in a bicycle-tire-grip to improve wear resistance. 

4 Description of Electrical System 

 
Figure 6 - Electrical Subsystem Overview 

4.1 Actuators and Control 

The actuators along with their integrated encoders are provided by NEX Robotics. The input to 

the motors is given by a low-level controller which in-turn takes velocity command from the computer 

(Intel NUC) via a USB cable. The encoder ticks are used by the controller to control each motor 

separately and are also provided to the computer for odometry. 
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4.2 Sensors 

The team has attempted to keep the sensor budget as low as possible, while not sacrificing much 

in aspects such as perception range or localization accuracy. Sensor specifications are as follows: 

 Laser Scanners – Two RPLIDAR11 A2 2D Laser Scanners are used. The range of each scanner is 

8 m (26 ft), while the angular resolution is 1° when operating at 4000 samples/sec. 

 Stereo Camera – A ZED12 Camera is used with a custom mount instead of the default one. It 

can output two 720p video streams at 60 Hz if a USB 3.0 port is used. The depth information 

obtained using the disparity map is accurate up to 20 m (66 ft). 

 Encoders – All four integrated encoders have an accuracy of 2048 counts/revolution. 

 IMUs – A Pixhawk13 2 Cube is used which has two IMUs. These are internally fused on the 

Pixhawk itself using an EKF algorithm. A Razor IMU manufactured by SparkFun is mounted on 

top of the camera and used for dynamic inverse perspective transform (discussed earlier). 

 GPS – A ‘Here GNSS’14 is connected to the Pixhawk for obtaining globally-referenced position 

data required for waypoint navigation. It supports GPS, Galileo, GLONASS, and BeiDou. 

4.3 Computers 

Ultimately, almost all sensor data goes into the computers for processing. For good performance, 

it is a generally recommended to isolate the computationally intensive, high-throughput vision 

pipeline from low-latency systems such as SLAM, motion planning, and control. A Dell Inspiron laptop 

is used for running the vision pipeline, while an Intel NUC is used to run the remaining processes. The 

two computers are connected via Ethernet. The ROS master on the NUC manages this communication. 

Name Purpose Processor RAM Dedicated GPU 

Intel NUC SLAM, Planning, Control i5 6th Gen 8 GB DDR3 None 
Dell Inspiron 5558 Vision Pipeline i5 5th Gen 4 GB DDR3 1GB Nvidia 920M 

 

4.4 E-stop and Status LED Implementation 

Two knobs on a 2.4 GHz RC transmitter can be used as switches - one for the wireless e-stop and 

one for seamless manual to autonomous mode switching (discussed earlier). The data received by the 

receiver is present as a PWM output at its pins. An Arduino Mega decodes this PWM signal and uses 

serial communication to send the data to a ROS node, which publishes it for manual control. In case 

of e-stop, the Arduino puts a HIGH (5 V) on the kill pin of the low-level controller which then powers 

down the motors. The mechanical e-stop directly cuts off the connection between the power source 

and the motors. 

LED strips placed below the e-stop indicate the mode of operation. In autonomous mode, the 

LEDs start flashing, while in manual mode they display a solid red color. When the robot is powered 

off or when the e-stop is used, it becomes dark/off. TIP122 is a Darlington transistor by ON 

semiconductors. The LED Strips work at a voltage of nearly 22.4V while all the digital systems use 5V 

logic. Hence TIP122 is used as an electronic switch to change the state of the LED Strips. 

                                                             
11 RPLIDAR A2 is a low-cost 2-dimensional laser scanner model manufactured by SlamTec Co. 
12 The ZED camera is a stereo camera manufactured by Stereolabs Inc., intended specifically for SLAM usage. 
13 Pixhawk is a well-known, low-cost flight controller hardware project. 
14 ‘Here GNSS’ is a low-cost GPS sensor compatible with the Pixhawk, manufactured by ProfiCNC. 
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4.5 Power System 

The Robot is powered up using two batteries. A 6-cell, 22.2 V LiPo battery of 10,000 mAh capacity 

is used to power up the actuators and LED lights. A 4-cell, 14.8 V LiPo battery of 10,000 mAh capacity 

powers up the NUC and all the attached electronic peripherals (2 laser scanners, 1 Pixhawk, 1 GPS, 1 

Arduino and 1 RC receiver). The laptop computer and the sensors attached to it (1 stereo camera, 1 

IMU) are powered by the internal battery of the laptop. After a complete recharge, the 6-cell battery 

can power the robot for 2.4 km (1.5 miles), when running at 1 m/s (3.3 ft/s) without reaching critical 

voltage. As the components powered by the 4-cell battery do not consume much power, it discharges 

at a much lower rate than the 6-cell battery. 

5 Description of Software Strategy 

Software development was the main focus of the team. The overall architecture was 

incrementally developed and continuously updated throughout our design process. The top-level 

software architecture is described in figure 7 and explained piece-by-piece in the rest of this section. 

The three major modules are Computer Vision, SLAM, and Motion Planning & Control. 

 

Figure 7 - The overall software architecture is split into 3 major modules. Ellipses denote ROS nodes (programs) and 
rectangles denote ROS topics (data). The dotted lines in the computer vision section represent optional parts. 
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5.1 Computer Vision 

This aspect of our software architecture involved the most experimentation. The inputs are the 

two video streams from the stereo camera and orientation data from an IMU. For IGVC, the end goal 

of the vision pipeline is to detect the lanes (and optionally output visual odometry). The IGVC 

environment can be treated as a combination of lanes, grass, and obstacles (everything above 

ground). The core reason as to why this task is so challenging is that there are environmental variations 

in lighting conditions, shadows, and grass textures. The subtasks involved can be classified into the 

following categories: 

 Visual Odometry – It is required only when there is significant wheel-slipping. This part is 

separate from the rest of the vision pipeline. Initially, we tried to estimate poses from optical 

flow, but the drift was very high for our implementation. So we performed a comparative 

study of open-source implementations of stereo visual odometry algorithms such as PL-SLAM, 

DSO, ORB-SLAM 2, etc. ORB-SLAM 2 was selected because of its speed and superior 

performance, specifically in IGVC-like environments.  Note that despite being a SLAM 

algorithm, it does not contribute to mapping in our use case, since ORB features are of no 

interest in IGVC. 

 Transformations – Two types of image transformations are performed. The first is the 

spherical distortion correction, done using the camera’s SDK itself. The calibration for this was 

performed using a chessboard with known dimensions. The rectified image is then optionally 

checked for obstacles before performing the dynamic inverse perspective transform 

(discussed earlier). The relative ordering of this step within the vision pipeline is crucial. It 

must be performed after any obstacle detection algorithms because they get distorted after 

the inverse perspective transform. But it must also be performed before the actual lane 

detection because, in a perspective view, lanes become thinner as they go farther (which is 

not optimal for most lane detection algorithms). 

 Obstacle Detection – Identifying obstacles using the camera is not mandatory in itself (the 

laser scanners are more accurate). However, it still serves as an important pre-processing step 

for better lane detection as it leaves only lanes and grass in the image. One approach used for 

obstacle detection was to project the laser scanner points onto the image and then use a 

watershed transformation in OpenCV to eliminate the entire obstacle. However, this method 

did not work well for striped obstacles. 

Therefore, a more robust method was used. The stereo camera’s driver computes a 

disparity map by matching the pixels of the images from the left and right cameras. This is 

used to obtain depth information, which essentially gives a 3D point cloud. We have modified 

the driver so that it can use the position of the camera relative to the ground to classify all 

points above the ground as obstacles. The results can be seen in figure 8. 

  
Figure 8 - Robust Obstacle Detection Using Depth from Stereo 
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 Superpixel Segmentation – Since we are using a neural network based classifier for lane 

detection, we first downscale the image for real-time performance. The image is downscaled 

from 1280x720 to 80x45 (each new pixel, referred to as a superpixel from now on, is almost 

equal to the thickness of one lane). For such a large amount of downscaling, an efficient yet 

information-preserving method is required. We have used an open-source GPU accelerated 

implementation of SLIC15, known as gSLICr and developed a ROS wrapper for it. Downscaling 

using segmented superpixels rather than the usual averaging over each 16x16 cell preserves 

more color information, as seen in figure 9. 

 
Figure 9 – Box-mean downscaling (center) leads to loss of white color as the grid boundaries (top) rarely coincide 
with the lane boundaries. gSICr downscaling (bottom) preserves color as the boundaries are obtained by clustering. 

 Lane Detection – One of our earlier approaches to lane detection involved obstacle removal, 

followed by grass elimination using adaptive thresholding, followed by a linear Hough 

transform on the pixels that remained (mostly lanes). However, thresholding-based methods 

do not generalize well to a variety of environments. Besides, the lanes are not always straight 

lines and require higher order Hough transforms, which are computationally expensive. 

For better accuracy, it was decided to use a CNN (convolutional neural network) for 

lane detection. CNNs are a popular choice for image classification because their architectures 

force them to relate spatially closer pixels over other pixels (unlike a fully-connected NN). 

Training a CNN meant that a labeled dataset had to be prepared. A program was developed 

for this purpose, wherein superpixels were initially labeled using a threshold and then the user 

could flip the erroneous labels by clicking on the superpixel. 

Once trained, the CNN takes a 7x7 grid of superpixels centered at the target superpixel 

and outputs a predicted label for the target. Note that it only required 3 hidden layers since a 

lane is a low-level feature. Some details in relation to training are as follows: 

o A single image could produce 3600 7x7 grids, each of which could be further flipped 

and rotated to generate 8 training examples per grid. Thus, a dataset of about 300 

images of IGVC-like environments taken at different times of the day was sufficient. 

o The architecture was decided by training and testing on MATLAB. An accuracy of 98% 

was achieved for the architecture shown in figure 10. Keras16 was used to implement 

the final architecture as it was simpler to integrate it with our ROS based framework. 

                                                             
15 See ‘SLIC Superpixels’ by Achanta et al. SLIC stands for Simple Linear Iterative Clustering. It is essentially a fast 
segmentation algorithm that performs clustering in 5-dimensional space (3 color + 2 spatial dimensions). 
16 Keras is a python based frontend for neural network training and inference. It uses TensorFlow as its backend. 
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It was found that the CNN was also able to classify lanes without the need for obstacle 

detection (if trained accordingly). Thus, obstacle detection was made optional (see figure 7) 

to reduce computational load and battery consumption. 

 

Figure 10 - Architecture Diagram of the CNN Used for Lane Detection 

5.2 Simultaneous Localization and Mapping 

As can be seen in figure 7, most of the nodes in this module are drivers for a particular sensor 

(encoder, laser scanner, and IMU + GPS). These drivers provide sensor data in a ROS message format. 

We have made several modifications based on our use case. For instance, the laser scanner driver has 

been modified to neglect points on the robot’s chassis itself. Also, the latitude-longitude data given 

by the GPS module is converted to UTM coordinates so that it can be used for localization. The non-

driver nodes have been explained in detail below: 

 UKF Localization – An open-source implementation of UKF (Unscented Kalman Filter) based 

localization, called robot_localization, has been used. The working principle is as follows: 

o A state vector of length 15 is maintained at all times. It consists of position, 

orientation, linear velocity, angular velocity and linear acceleration – each of which is 

a vector of length 3. 

o The prediction step is performed at 20 Hz assuming a 3D non-holonomic unicycle 

model, using the control input and the current state. 

o Sensor data arrives asynchronously from each sensor at about 10 Hz. A correction step 

is performed for each measurement. If a sensor is disconnected at any point, the 

algorithm still functions as the measurement update is asynchronous anyway. 

o From wheel odometry, the speed and 2D angular velocity are used. From the IMU, 3D 

orientation and angular rate (from the gyroscope) is used. IMU acceleration is ignored 

due to high covariance. The horizontal position from GPS is used but not the altitude. 

o Optionally, 3D position and orientation data from visual odometry is also used. 

For outdoor use-cases, the mapping algorithm may not always work well (especially in 

sparse environments). Therefore, we needed to improve the localization accuracy. This was 

achieved by experimentally measuring the covariances of each sensor (measurement noise) 

and the control characteristics by analyzing raw data on MATLAB. The process noise 

covariance matrix was also tuned. Finally, we were able to repeatedly achieve a localization 

error of less than 3% for a 500 m (1640 ft) outdoor run, without GPS. 

 Mapping – With very low localization errors, it is possible to generate a global map even 

without SLAM. Therefore, we have developed a ROS node that directly uses the sensor-fused 

odometry and transforms the laser scan and lane data into the global frame, inserting it into 

a map. 
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We have also tried using SLAM and performed a qualitative comparison between the 

two (see figure 11). For SLAM, we have used Cartographer, an open-source SLAM package by 

Google. It uses a gradient descent based squared error minimization approach for local scan-

to-map matching. Small local maps are generated this way. It then develops a graph network 

of these local maps and looks for loop-closure constraints in this global graph in real-time 

using a slightly more efficient approach for map-to-map matching. In practice, we found that 

the results were slightly better than our earlier approach to mapping. However, in sparse 

environments with almost no laser scan data, the algorithm’s behavior was unstable, and 

therefore it was decided not to use it just yet. The team plans to modify the package later for 

better performance in sparse outdoor environments. 

  

Figure 11 - A map generated within our campus over a 500 m (1640 ft) trajectory using our approach (left). Zoomed 
in sections of a part of the same map generated using Cartographer (right top) and using our method (right bottom). 

5.3 Motion Planning and Control 

 Path Planning – Most of the work on path planning was done by the team in the year 2016-

17 itself. After testing a range of algorithms such as A*, D* Lite, PRM (Probabilistic Road 

Maps), etc. over MATLAB simulations, it was decided to use a modified version of RRT (Rapidly 

Exploring Random Tree) implemented from scratch by our team in C++. The RRT algorithm 

works as follows: 

o A tree is initialized with the current position as the root node. 

o Samples are randomly drawn from free space and connected to the nearest node by 

a straight line segment. If the line segment completely lies in free space too, a node 

corresponding to a fixed step size in the same direction is added. 

o The tree is allowed to ‘grow’ until a fixed number of nodes or iterations are reached. 

o The shortest path is chosen by tracing back a path from the nodes which lie close 

enough to the goal and comparing their total times. 

The reasons why RRT was chosen over other algorithms are:  

o It is easier to introduce non-holonomic constraints within the path by simply rejecting 

those nodes which lead to large turning angles. Actually, the vehicle can even turn on-

point, but this adversely affects speed. 

o It is fast enough so that we can simply re-run the algorithm every time a new map is 

generated. 

The path planner also performs some additional tasks – the map is converted to a 

configuration space at the beginning, and the path is smoothened at the end. 
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 Control – For the high-level path following controller, it was decided to use a non-linear 

control law17 specifically developed for unicycle model vehicle, rather than a PID controller. 

Once we developed a ROS node for it from scratch, it was found that tuning this controller 

was relatively easier. The control law used is: 

[
𝑣𝑑

𝜔𝑑
] =  [

𝐾𝑠

𝑢 +
𝑣 cos 𝜃 𝑐(𝑠)

1 − 𝑐(𝑠)𝑙

] 

𝑢 = −𝑘𝑎𝑣𝑙 sinc 𝜃 − 𝑘𝑏𝑣𝜃 

Here, 𝑣𝑑 and 𝜔𝑑  are the output velocity and angular speed given by the high-level controller 

to the low-level controller. The speed is fixed at a set point 𝐾𝑠 (the controller reduces the 

speed before sharp turns though). 𝑐(𝑠) is the local curvature of the path, 𝜃 is the orientation 

error and 𝑙 is the signed distance error. 

5.4 Interoperability Profiles 

The IOP problem is being tackled by using an open source software, JTS (Jaus Tool Set). The IOP 

problem is broken down into an FSM which is then implemented using the JTS GUI. The GUI further 

generates the corresponding C++ code. The code is edited for some minor user-based changes like 

printing some message, initializing a state automatically, etc. The IOP-ROS bridge is being used for 

interfacing ROS with JTS generated code. An overview of the IOP implementation by JTS is as follows18: 

 
Figure 12 - IOP Implementation by JTS 

6 Failure Modes and Resolutions 
Identification of failure modes is a very crucial component of testing. While some problems can 

only be debugged by recording the entire data at then analyzing it later, some more common issues 

can usually be identified at the testing site itself with the help of a GUI. Therefore, the team has 

developed a Mission Control Dashboard for easy and quick identification of failure points. It shows 

information about the entire state of all 3 modules, as seen in figure 13. 

                                                             
17 See ‘Nonlinear Control Design for Mobile Robots’, by C. Canudas de Wit., in The International Journal of 
Robotics Research. 
18 Image Source: the SourceForge page of the ACTIVE-IST Lab at the University of Central Florida 
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Figure 13 - Mission Control Dashboard. Mapping data is overlayed on top of satellite imagery (downloaded in real time). 

Common Failure Modes Identification/Resolution 

General mechanical or electrical 
failure (loose nuts, broken wires) 

Mechanical and electrical toolkit available (contains fastening 
and soldering tools, plus some spare nuts, bolts, wires and ICs) 

Castor wheel wear and tear Spare tire grip available 
Battery drainage Battery monitor attached to all batteries 
GPS fix not found Incorrect position will be seen on the dashboard 
Controller not tuned well Control errors can be seen on the dashboard 
Poor lane detection Seen on the dashboard, solved by training CNN on new data 

7 Miscellaneous 
 Performance Testing – Subsystem tests were performed almost every alternate weekend, and 

all the sensor data was recorded. The same data was then used for testing, debugging and 

improving our algorithms. Although some simulations were made using MATLAB and Gazebo, 

testing on real-world data was preferred as it models the errors better. Towards the end, an 

IGVC-like test track was made for testing. The vehicle can travel at a top speed of 2.1 m/s (6.9 

ft/s), but it is driven autonomously at an average speed of 0.5 m/s (1.6 ft/s). It can easily climb 

inclines of up to 30° with the payload. The reaction time was found to be less than 1 second. 

 Cost Estimate – The total rebuild cost of the robot was calculated to be $7,500. This includes 

all the sensors, both onboard computers and the entire mechanical and electrical subsystem. 

All the software is free and open-source. Throughout the design, lowering costs was a priority. 

 Planned Future Improvements – Besides improving the current system, the team also intends 

to develop the vehicle beyond the requirements for IGVC. One of the main goals of the team 

is to develop a culture of robotics related learning within the institute and to develop a low-

cost vehicle for an end user. Keeping these points in mind, we plan to experiment with other 

sensors such as radar and features such as pre-loaded maps, voice control, etc. 
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