
1

Visual Human Detection and Tracking on a
quadrotor platform.

Harsh Sinha (14265) Shubh Gupta(14670)
Dept. of Aerospace Engg. Dept. of Electrical Engg.

harshsin@iitk.ac.in shubhgup@iitk.ac.in

Abstract—This report presents an overview of a Robot Operating System (ROS) based architecture for human tracking through a
quadrotor using deep learning techniques for detection and Kalman Filter/Tracking techniques employed for generating smooth control
input. Since quadrotors have low payload carrying capacity, we employ a remote server for the detection task. With this project we
intend to develop a quad-copter based system for detecting and tracking a human target using single or multiple cameras with the
ability to function appreciably in occluded and crowded environments, as well as being able to follow the target while maintaining a
fixed separation as a surveillance task.

Index Terms—Quadcopter, Human tracking, ROS, Gazebo, human detection, SSD, KCF.

F

1 INTRODUCTION

Human-following robots have been researched and de-
veloped actively these decades due to their plentiful appli-
cations in daily life and manufacturing. There are already
commercially available quadrotors which are being used
by professionals for shooting videos of adventure sports.
Although the current systems rely on the use of a mobile
phone or some other beacon for correct tracking except for
the one introduced by DJI with its Phantom 4 drone, which
being a commercial product, is closed source.

A human-following robot requires several techniques
such as human’s target detection, robot control algorithm
and obstacles avoidance. Human detection and tracking
is a difficult task in general due to abrupt human object
motion, object occlusion and object scale change, and chang-
ing object appearance due to changes in illumination and
viewpoint, non-rigid deformations, intra-class variability in
shape and posture, and potential camera movement, non-
overlapping field of views between cameras. Furthermore,
movement of camera with tilt and jerks accompanied by mo-
tion of the quadrotor make it difficult to achieve a fix over
the position of a mobile target such as a human as the quad
may lose sight of the target. Furthermore, state of the art
techniques for detection and tracking use deep learning and
require high computation powers and dedicated hardware
to function at a reasonable rate.

With this project, we aim to create an open source system
for accurate and real time system for human tracking which
could perform well in crowded as well as slightly occluded
conditions.

This project can be divided into the following prime sec-
tions : Detection of human subject, Tracking of the subject,
Trajectory generation and Control of the vehicle. We discuss
these in detail in the coming sections.

1.1 Previous Work
In recent years, the problem of human tracking using drones
has received a lot of attention. Juhng-Perng Su et al. [1] and

Tayyad Naseer et al. [2] use a stereo camera or a depth cam-
era for multi-rotor drone tracking of a human by detecting a
targeted object. Work by Thomas Muller and Markus Muller
[3] uses monocular cameras to track a human who have
different color against background colors. Work by Ashraf
Qadir et al. [4] focuses on an unmanned miniature plane
tracking an object by detecting the image similar to an image
called template in two-dimensional images captured by a
monocular camera. Another work by Imamura [5] tracks
a human while detecting a human without the differences
of colors and the movements of a target by making use
of Histograms of Oriented Gradients (HOG) features and
linear Support Vector Machine (SVM) for ROI classification.

In [6] Comaniciu et al. introduce a new framework for
efficient tracking of nonrigid objects by spatially masking
the target with an isotropic kernel. In [7] Weng et al. pro-
posed an adaptive Kalman filtering algorithm to effectively
track the moving object in a video frame sequence. Liu et
al. and Redmon et al. have worked on methods using deep
learning [8], [9] to detect a bounding box around an object
in an image.

Achtelik et. al. in [13] work on a system where motion of
a quadcopter is stably controlled based on visual feedback
and measurements of inertial sensors. Bartak et. al. [14]
utilize a computer-vision approach called tracking-learning-
detection (TLD) to track an arbitrary object selected by a
user in the videostream going from the front camera of the
drone. Dang et. al. [15] perform a systematic formulation of
a closed-loop control system design for tracking a ground
object using ardrone platform. In the PhD thesis of Kalal
[16] the authors propose a novel tracking framework (TLD)
that explicitly decomposes the long-term tracking task into
tracking, learning, and detection, where the tracker follows
the object from frame to frame. In a seminal work by
Lucas and Kanade, [17] the authors present a new image
registration technique that uses spatial intensity gradient
information to direct the search for the position that yields

2

the best match in stereo image pairs.

2 METHODOLOGY

In this section we discuss the pipeline for the system which
consists of the following submodules

• Environment Simulation
• Stereo image processing module
• Remote machine object detection node
• Distance estimation
• Kalman filtering
• Object of Interest Tracking
• Control node

We will discuss these submodules in more detail in upcom-
ing sections.

2.1 Environment Simulation

Fig. 1: Simulation models of quadrotor and human subject

Developing the pipeline requires a simplified testbed
which simulates the real world to a certain extent, in order
for the developed pipeline to be robust and be directly
adaptable to real world use cases with minimum modifi-
cations. We have used Gazebo 8.0 for simulation purposes,
since it has direct integration with Robot Operating System
(ROS). A custom world was created for the purpose, con-
sisting of a human model with waypoints set to walk in a
square, and a quadcopter with stereo camera mounted on it.
The images acquired by the quadcopter were published onto
ROS topics so that they are accessible just like a real camera
image. In order to test for occlusions we have also included
a building. The simulation uses ‘ros-control‘ package for
realistic quadrotor controls, this package is also used on real
world robot applications.

Fig. 2: Disparity map

2.2 Stereo image processing module

Stereo images acquired from the simulation were used to
calculate a disparity map, by making use of relative posi-
tions of the camera. The specs of the simulated camera are
shown in table 1.

The disparity of features between two stereo images are
usually computed as a shift to the left of an image feature
when viewed in the right image. In real world applications
since stereo images may not always be correctly aligned to
allow for quick disparity calculation, images obtained are
first rectified for the relative rotations of the cameras. After
rectification, the correspondence problem can be solved
using an algorithm that scans both the left and right images
for matching image features to compute disparity by the
normalized correlation.

NC =

∑∑
L(r, c).R(r, c− d)√

(
∑∑

L(r, c)2).(
∑∑

R(r, c− d)2)
(1)

We make use of the ”stereo image proc” package in
ROS to calculate and publish the normalized correlation
disparity.

2.3 Remote machine object detection node

Fig. 3: Object detection along with rate on remote server

Deep Learning based approaches trained on the large
datasets like Image-Net, such as SSD (Single Shot multi-
box Detector) [8], faster R-CNN [12], YOLO (You Only Look
Once) [9] etcetera have been consistently performing well

3

Quantity Value
Image Resolution 400x400

hfov 80 degrees
baseline 20 cm

Update Rate 30 Hz

Table 1. Stereo Camera Specifications

for the classification of different objects, including humans.
Detection is done using these methods in order to identify
humans in the camera image from the drones. A simple
comparison of the speed of the different methods leads to
the top contenders, YOLO and SSD. Now, one of the big
issues with these approaches, stopping them from real-time
application in drones is the need of Graphical Processing
Units (GPUs). These GPUs are heavy and power-hungry,
thus cannot be placed on drones, also the smaller Nvidia
Jetson boards have quite under-powered ARM based CPUs
limiting small application as well.

The solution that we propose is to use the Robot Operat-
ing System (ROS) in order to transfer the images captured to
a separate computer on ground and then do the processing
there and transfer the results back using the same architec-
ture. This would allow us use huge computers with great
computing power, which would then in turn allow us to
use heavier and better performing techniques. This proposal
will be limited by the bandwidth of the connection, as of
now, this is being circumnavigated by sending images of
smaller sizes (see table 1). In order to further increase the
rates of transfer we are only sending compressed images,
which provide huge boosts to the processing rates (see table
2 for detailed time analysis).

At present we are using the SSD, from the tensorflow
object detection API [11] released sometime back.

2.4 Distance estimation
Using disparity image calculated from stereo image match-
ing as well as the object bounding box obtained from the
detection node, we estimate the distance of the object from
the camera. From the bounding box region extracted from
the disparity image, the largest cluster of similar-valued
pixels is extracted and identified to be the cluster belonging
to the human. A mean value of the pixels belonging to
this cluster is calculated, which is used to obtain the depth
estimate by the image projection formulae

z =
f.T

d
(2)

where z is the distance to be estimated, d is the disparity
value, f is the focal length of the camera in pixels and T is
the baseline in real world units.

Another monocular camera based approach was devel-
oped for depth estimation in the project, using the scaling
factors obtained from measuring the spread of ORB features
in the image. The algorithm proposed was as follows

• Detect ORB features in the image
• Remove features lying outside bounding box for the

image
• match the features in consecutive images and remove

unmatched features
• calculate std. deviation of the features in x and y for

both t and t+1 image frames

• obtain estimates of rate of change of depth using
aspect ratio of bounding boxes

• remove the estimate (x or y) with greater change
from previous value

Fig. 4: ORB features in image frames

The algorithm makes use of the fact that change in depth
of an object from camera is inversely proportional to its
visible size in the image and directly proportional to the
true size of the object. Hence,

δz = k.l(
1

xt
− 1

xt+1
) (3)

where δz is the change in true depth of the object,
xt, xt+1 are sizes of projection in images at t and t+1 frames,
l is the true size of object and k is proportionality constant.
We estimate the size of the object in the image by the std
deviation of the ORB features inside the bounding box in
the image. Since this value is susceptible to changes by
occlusion, we use the true size of the visible portion as
the true size of the object in the formulae. Also adding
the assumption the the object will be either occluded in x
direction or y direction at a time,

δzx = k.(w/L)(
1

stdtx
− 1

stdt+1
x

) (4)

δzy = k.(l/W)(
1

stdty
− 1

stdt+1
y

) (5)

where w,l are true sizes of visible portions and W,L are
total true sizes of the objects. Hence, quantities w/L, l/W
can be estimated by aspect ratio and its inverse of the
smaller bounding box in the images.

Finally, the stereo method was chosen since it gave more
robust depth estimates.

4

Devices Image Capture Detection Image Transfer Uncompressed Compressed
Intel i5-3250, No-GPU 34 ms 130 ms NA NA
Nvidia Geforce 960M 34 ms 60 ms NA NA

Nvidia Titan X 34 ms 5 ms 500 ms 10 ms

Table 2. Time Analysis

Fig. 5: Matched ORB features in consecutive frames

2.5 Kalman filtering

The estimates of bounding box coordinates obtained from
object detection node, as well as the depth estimates ob-
tained from stereo-disparity estimates and rate of change
of depth estimation from ORB features were combined
to be fed as measurements for the relative state of the
object(human) in pixel coordinates into the kalman filter.
The Kalman filter, running at 30 Hz, was employed to
smooth out the obtained measurements as well as provide
predictions in case the measurement generating nodes failed
to provide any measurement. Furthermore, the predictive
capability of the kalman filter was also leveraged to provide
measurements in case the object to be tracked was occluded,
since the measurements will not be generated in such cases
as well.

A vanilla Kalman filter can be modelled as

x0 = Gaussian(µ0,Σ0)

xt+1 = At.xt + bt + ε1t+1

yt = Ctxt + dt + ε2t

ε1t = Gaussian(0, Q)

ε2t = Gaussian(0, R)

(6)

where x is the model state and y are the measurements.
For our case

xt =

xc
yc
zc
vx
vy
vz
ax
ay
az

yt =

xmymzm
vz

The state-transition and observation matrices for track-
ing human subject

At =

1 0 0 T 0 0 0.5 ∗ T 2 0 0
0 1 0 0 T 0 0 0.5 ∗ T 2 0
0 0 1 0 0 T 0 0 0.5 ∗ T 2

0 0 0 1 0 0 T 0 0
0 0 0 0 1 0 0 T 0
0 0 0 0 0 1 0 0 T
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

Ct =

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0

with bt and dt set to 0.

Values of process and measurement noise parame-
ters Q and R are determined from measurement set us-
ing Expectation-Maximization, which is a way to find
maximum-likelihood estimates for model parameters when
your data is incomplete, has missing data points, or has
unobserved (hidden) latent variables. It is an iterative way
to approximate the maximum likelihood function. It works
by choosing random values for the missing data points, and
using those guesses to estimate a second set of data. The
new values are used to create a better guess for the first set,
and the process continues until the algorithm converges on
a fixed point. The EM algorithm:

Q(θ|θt) = EZ|X,θt(logL(Z,X, θ))

θt+1 = argmaxθQ(θ|θt)
(7)

Where measurements are modelled as X and Z is the
latent variable over which distributions are formed. The
values of noise parameters (modelled by θ) are estimated
during the 2nd step (M-step).

2.6 Object of Interest Tracking
The implementation of this project in the real world would
certainly command the need to use wireless networks for
information exchange between the ground based server and
the quadrotor. Now, the prime options for communication
of this kind would be 4G/5G mobile networks or WiFi,
give the short range of WiFi, for long range applications
one would gravitate towards the former option. One of the
biggest issues which we anticipate this method would have
to deal with, would be the occasional frame drop when
transferring image data at high rate. In order to deal with
this we use a ROS implementation of ”High Speed Tracking
with Kernelized Correlation Filter” [18]. Our implementa-
tion is based off of code from Tomas Vojir [19].

KCF kernel

kxx′ = exp(− 1

σ2
(||x||2 + ||x′||2 − 2F−1(x̃.x̃′))) (8)

5

Where x and x’ are image patches being compared. This
computation can be performed in O(nlog(n)).

The idea behind this method is that give one (or more)
labels one should be able to perform online learning in order
to discriminate between patches of interest and the back-
ground. More details on the original implementation can be
easily found. Now since this is a very less computationally
involved, the rate of performance goes as up as high as 100
frames per second. This lets us relax up the condition on
the detection pipeline. As for the first labeled frame, we
have used the detection bounding box returned after the
execution of first frame.

Fig. 6: KCF Tracked human subject

2.7 Control node
The rectified control input is obtained from Kalman filter/
Tracking node. The input is fed into a hierarchical controller,
highest level of which uses a cascade of two PID controllers
for the horizontal movement and two separate PID con-
trollers for the yaw rate and vertical velocity. The velocity
outputs are used for feeding into the lower level controller
which calculates the necessary forces and torques acting on
the body. The torques and forces hence generated are then
applied on the simulation to make the quadrotor move. The
low level control is is handled by Gazebo plugins, and hence
we tune the high level controller.

Fig. 7: Cascaded controller overview

3 EXPERIMENTS

3.1 Till Midterm report
A gazebo simulation is used for all of the experiments ,
the simulation used was originally created by Ritesh Hald-
har and modified by us. We are using a simulation with
a quadrotor and several actor based humans moving on
certain trajectories, which at the moment are fixed. The

quadrotor used is hector-quadrotor and for capturing images
the onboard camera is used, the resolution of capture is
320x240. Now, the reason we can claim that methods dis-
cussed before, which are based on feature point detection
like [7] can work as when testing for detection of ORB
features on the obtained image we got ¿400 feature points.

Images captured are sent to GPU server on which a
tensorflow API is used to perform detection using SSD, this
is done to simulate the real world implementation of the
pipeline. The frequency of the camera was set to 15Hz as
the fastest detection was being done at 14Hz and feeding
in more frames would only consume bandwidth of the
connection used to transfer images between the GPU server
and simulation.

3.2 After Midterm report

Fig. 8: Tracectory of quadrotor with human subject point
cloud

Support was added for more complex trajectories of
the human subject such as moving in a square and with
varying speeds and turn rates. This allows the simulation
to better model real world scenario. Also, this increased
a challenge for quadrotor since the subject no longer per-
manently stayed inside the camera field of view. This also
helped avoid local optima states for the quadrotor where
it could keep the subject at the center by just changing the
yaw values.

Depth estimation portions were worked upon both in
using stereo camera as well as monocular version, since
the previous method of estimating the distance by the
area of the bounding box was unreliable. The area based
estimate changed quadratically with distance, voiding the
linear requirement of the simple control, as well as changed
drastically in case of occlusion or if the human subject was
at an edge of the frame.

Kalman filter was implemented for high rate control
input generation as well as occlusion avoidance. This helped
take care of the issue of missing detections in hard-to-detect
frames as well as smoothed out the detections, aiding in
easier control. It also provided an added functionality of
ability to incorporate occlusion/ out-of-frame cases.

Tracking node was developed for object detection in
crowded environments. KCF was incorporated into the
pipeline along with kalman filter to provide better estimates
since it also uses information directly from the frames unlike

6

kalman filter. This provided an added functionality of ability
to incorporate cases with multiple moving subjects.

Fig. 9: Experimental setup in Gazebo

4 RESULTS

Detailed time based analysis can be obtained in Table 2 for
various submodules in the pipeline.

Fig. 10: Results of distance estimation by Kalman filter as
well as orb feature method against ground truth

5 CONCLUSION

We developed a system for detecting and following a human
subject autonomously via a quadrotor with only vision
based techniques. The payload over the quadcopter was
kept to a minimum by offloading high computation tasks
to a remote server with a GPU. The system was made
robust to occlusion and/or presence of other subjects via
KCF tracking and Kalman filtering. The proposed system
was tested to be able to function in a Gazebo simulation.

Limitations of the proposed system include the require-
ment of a high speed and bandwidth connection to the
remote server machine to transport images and similar data.
Hence, functioning over WiFi hence results in suboptimal
results. Another limitation is that the initial frame seen
by the quadcopter should only contain the target human

subject, since the system cannot decide between different
subjects in the first frame. Also, the system is not yet robust
to heavy jerks in the camera video feed, as well as fails when
it loses the sight of the human target for longer periods of
time.

6 FUTURE WORKS

”One of the virtues of working on simulation is the lack
of real world problems one has to face irrespective of how
accurately the simulation models the real world, since the
real world is just broken.” Besides the implementation on
a real world quadrotor, the following things can be worked
on as extensions to this project:

• Exploration of trajectory generation techniques
and maybe a move towards optimal trajectory-
generation.

• The model can be edited to include a gimbaled
camera which would reduce the adverse effect on
the camera image due to the motion of the quad.

• Other filters from the kalman family can be exploed.

REFERENCES

[1] Juhng-Perng Su and Kuo-Hsien Hsia, Height Estimation and
Image Tracking Control of an Indoor Quad-Rotor Craft via Multi-
Vision Systems, International Journal of Computer, Consumer and
Cool (IJ3C), vol. 2, no. 4, 2013

[2] Tayyad Naseer, Jurgen Sturm and Daniel Cremers, FollowMe:
Person Following and Gesture Recognition with a Quadrocopter,
2013IEEE/RSJ International Conference on Intelligent Robots and
Systems(IROS), November, 3-7, 2013

[3] Thomas M ller and Markus M ller Vision-based drone flight
control and crowd or riot analysis with efficient color histogram
based tracking, SPIE 8020, Airborne Intelligence, Surveillance,
Reconnaissance (ISR) Systems and Applications VIII, 80200R, May,
25, 2011

[4] Ashraf Qadir, Jeremiah Neubert, and William Semke, On-Board
Visual Tracking with Unmanned Aircraft System (UAS), Infotech
Aerospace 2011, March, 29-31, 2011

[5] Imamura, Yusuke, Shingo Okamoto, and Jae Hoon Lee. ”Human
tracking by a multi-rotor drone using HOG features and linear
SVM on images captured by a monocular camera.” Proceedings
of the International MultiConference of Engineers and Computer
Scientists. Vol. 1. 2016.

[6] Comaniciu, Dorin, Visvanathan Ramesh, and Peter Meer. ”Kernel-
based object tracking.” IEEE Transactions on pattern analysis and
machine intelligence 25.5 (2003): 564-577.

[7] Weng, Shiuh-Ku, Chung-Ming Kuo, and Shu-Kang Tu. ”Video
object tracking using adaptive Kalman filter.” Journal of Visual
Communication and Image Representation 17.6 (2006): 1190-1208.

[8] Liu, Wei, et al. ”Ssd: Single shot multibox detector.” European
conference on computer vision. Springer, Cham, 2016.

[9] Redmon, Joseph, et al. ”You only look once: Unified, real-time
object detection.” Proceedings of the IEEE conference on computer
vision and pattern recognition. 2016.

[10] Caelles, Sergi, et al. ”One-shot video object segmentation.” CVPR
2017. IEEE, 2017.

[11] Tensorflow ”Tensorflow Object-detection API”
https://github.com/tensorflow/models/tree/master/research/object detection
2017.

[12] Ren, Shaoqing, et al. ”Faster r-cnn: Towards real-time object
detection with region proposal networks.” Advances in neural
information processing systems. 2015.

[13] Achtelik, Markus, et al. ”Visual tracking and control of a quad-
copter using a stereo camera system and inertial sensors.” Mecha-
tronics and automation, 2009. icma 2009. international conference
on. IEEE, 2009.

[14] Bartk, Roman, and Adam Vykovsk. ”Any object tracking and
following by a flying drone.” Artificial Intelligence (MICAI), 2015
Fourteenth Mexican International Conference on. IEEE, 2015.

7

[15] Dang, Chi-Tinh, et al. ”Vision based ground object tracking us-
ing AR. Drone quadrotor.” Control, Automation and Information
Sciences (ICCAIS), 2013 International Conference on. IEEE, 2013.

[16] Kalal, Zdenek, Krystian Mikolajczyk, and Jiri Matas. ”Tracking-
learning-detection.” IEEE transactions on pattern analysis and
machine intelligence 34.7 (2012): 1409-1422.

[17] Lucas, Bruce D., and Takeo Kanade. ”An iterative image registra-
tion technique with an application to stereo vision.” (1981): 674-
679.

[18] Henriques, Joo F., et al. ”High-speed tracking with kernelized
correlation filters.” IEEE Transactions on Pattern Analysis and
Machine Intelligence 37.3 (2015): 583-596.

[19] Vojir, Tomas, ”Open Source implementation of High-
speed tracking with kernelized correlation filters.”
Github:https://github.com/vojirt/kcf

